بررسی قضیه نقطه ثابت مشترک در فضاهای متریک کامل

پایان نامه
چکیده

در این پایان نامه ما قضایایی از نقطه ی ثابت مشترک ‏برای چهار خودنگاشت در چهار مرحله ارائه می کنیم. 1 ـ قضیه ای در مورد یکتایی نقطه ی ثابت مشترک برای دو زوج از نگاشت های به طور ضعیف سازگار در فضای متریک کامل که تعمیم نتیجه ی برین ـ فیشر با شرایط ضعیفتر یعنی جایگزینی سازگاری ضعیف به جای جابجایی و مدول منقبض به جای پیوستگی می باشد‏، اثبات می کنیم. 2 ـ قضیه ای در مورد نقطه ی ثابت مشترک برای چهار خودنگاشت که تعمیم نتیجه ی برین ـ فیشر با استفاده از شرایط ضعیفتر یعنی جایگزینی سازگاری ضعیف و دنباله ی وابسته به جای جابجایی نگاشت ها و فضای متریک کامل می باشد‏، اثبات می کنیم. 3 ـ مفهوم نگاشت های ناسازگار با استفاده از خاصیت جدید تعمیم می دهیم قضیه ای در مورد نقطه ی ثابت مشترک تحت شرایط انقباض اکید‏، اثبات می کنیم. 4 ـ قضیه ای در مورد نقطه ی ثابت مشترک برای چهار نگاشت صادق در شرط انقباض ضعیف تعمیم یافته‏، اثبات می کنیم.

منابع مشابه

بررسی قضایای نقطه ثابت مشترک در فضاهای متریک مخروطی

با توجه به اینکه خواص پایه ای فضاهای متریک از اعمال جبری اعداد حقیقی بدست می آید ، این ایده کاملا طبیعی است که در فضاهای متریک به جای اینکه برد تابع متریک در r قرار گیرد در یک فضای برداری ( و یا باناخ ) قرار گیرد . این ایده برای اولین بار توسط هانگ و زانگ تحت عنوان فضاهای متریک مخروطی به طور رسمی مطرح گردید و پس از آن ریاضیدانان زیادی به آن علاقه نشان داده و مباحث مختلف مطرح شده در فضاهای متریک...

15 صفحه اول

قضیه نقطه ثابت برای انقباضهای چند مقداری در فضاهای متریک کامل

در این پایان نامه به معرفی نگاشت های مجموعه مقداری انقباضی در فضای متریک کامل پرداخته، سپس قضیه نقطه ثابت را برای نگاشت های مجموعه مقداری در فضاهای فشرده و کامل ارائه می دهیم و در پایان با ارائه چند مثال درستی مطالب را بررسی می کنیم.

15 صفحه اول

قضیه های نقطه ثابت برای نگاشتها در فضاهای متریک مخروطی

در این پایان نامه ابتدا به معرفی انواع فضاهای متریک مخروطی پرداخته ایم. سپس برخی قضایای نقطه ثابت که در فضای متریک ثابت شده اند، از جمله اصل انقباض باناخ، را در فضای متریک مخروطی نرمال اثبات می کنیم. در ادامه نشان می دهیم فرض نرمال بودن برای بسیاری از این قضایا ضروری نیست. در فصل دوم، قضیه ای را ثابت می کنیم که نقطه ثابت مشترک سه درون ریختی روی فضای متریک مخروطی را بدون فرض پیوستگی آنها به دست...

15 صفحه اول

تعمیم قضیه نقطه ثابت کاریستی برای فضاهای متریک برداری مقدار

قضیه نقطه ثابت کاریستی در سال 1975 توسط کاریستی به عنوان تعمیم قضیه انقباضی باناخ عنوان گردیده شد و در سال 2088 توسط کاراپینار و عبدالجواد روی فضای متریک مخروطی و در سال 2011 توسط خمسی و آگاروال روی فضای متریک برداری مقدار تعمیم داده شده است.

15 صفحه اول

فضای متریک هاسدورف جزیی و قضیه ی نقطه ثابت نادلر روی فضاهای ‏متریک جزیی

‏در این باب مفهوم فضای متریک جزیی هاسدورف را معرفی و نظریه ی نقطه ثابت برای توابع چند مقداری روی فضای متریک جزیی را با اثبات قضیه نقطه ثابت نادلر مورد مطالعه قرار داده و توسعه یافته ی نظریه ی نقطه ثابت برای نگاشت های چند مقداری را که در اقتصاد‏، معادلات دیفرانسیل کاربرد دارد را بیان می کنیم.

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده علوم ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023